同時(shí),大尺度的渦旋從主流吸取動(dòng)能,在運(yùn)動(dòng)過(guò)程中傳遞給較小尺度的渦旋,這樣逐級(jí)傳遞,一直到微尺度的渦旋。在較大尺度的渦運(yùn)動(dòng)中,流體粘性幾乎不起作用,可忽略不計(jì),因而在動(dòng)能傳遞中幾乎沒(méi)有能耗;而在微尺度的渦旋運(yùn)動(dòng)中,流體粘性將起主要作用,傳送到這些低級(jí)渦旋的能量就會(huì)通過(guò)粘性作用轉(zhuǎn)化為熱能。水流中同時(shí)存在無(wú)數(shù)大大小小的渦旋,產(chǎn)生一系列的脈動(dòng)頻率,具有連續(xù)的頻譜。
眾多的水處理工作者均認(rèn)為:只有具有與顆粒尺寸相同數(shù)量級(jí)的渦旋才對(duì)碰撞有效,其它的不起作用。由于實(shí)際的絮體顆粒尺寸變化幅度是1-1000um,因此,有很大一段的渦旋起作用,不能?chē)?yán)格劃分大小渦旋的界限。紊動(dòng)的擴(kuò)散作用主要取決于大尺度的紊動(dòng)。大渦旋的尺度可以認(rèn)為與折板單元的尺度數(shù)量級(jí)相同。折板單元連續(xù)的縮放,使水流形成大量不同尺度的渦旋,促進(jìn)了水流內(nèi)部絮體顆粒間的相對(duì)運(yùn)動(dòng),增加了碰撞機(jī)會(huì),所以相對(duì)于隔板絮凝池,絮凝效果大大提高。
折板絮凝池的設(shè)計(jì)主要控制參數(shù)是水流速度、水頭損失和絮凝時(shí)間,但建成后往往發(fā)現(xiàn)實(shí)際運(yùn)行參數(shù)與設(shè)計(jì)值相差甚遠(yuǎn)。以水頭損失的計(jì)算為例,設(shè)計(jì)手冊(cè)中,其計(jì)算采用的是明渠漸擴(kuò)和漸縮公式,有人通過(guò)研究發(fā)現(xiàn),豎流折板絮凝池水頭損失實(shí)測(cè)值與設(shè)計(jì)計(jì)算值相差較大,實(shí)測(cè)值明顯小于設(shè)計(jì)計(jì)算值。
開(kāi)發(fā)新型、、安全的絮凝劑,深入研究絮凝基礎(chǔ)理論及其控制技術(shù),現(xiàn)已成為一門(mén)迅速發(fā)展的科學(xué)與技術(shù)。絮凝過(guò)程是一個(gè)復(fù)雜的動(dòng)態(tài)過(guò)程,盡管要地表達(dá)某一水質(zhì)、絮凝劑和水流流態(tài)特性因素對(duì)絮凝效果的影響還存在很大的困難,但隨著多學(xué)科技術(shù)集成度的提高以及實(shí)際應(yīng)用的需要,預(yù)計(jì)折板絮凝研究將在如下方面有所發(fā)展:
合理地選定和優(yōu)化混凝工藝,不僅會(huì)提高出水水質(zhì),還能達(dá)到節(jié)能、節(jié)藥及降低運(yùn)行費(fèi)用的目的。往復(fù)式隔板絮凝池是依靠水流在廊道間的往返流動(dòng),使顆粒碰撞聚集。實(shí)際運(yùn)行資料表明,有些絮凝池在運(yùn)行過(guò)程中絮凝效果不佳,致使后續(xù)工藝的出水水質(zhì)遠(yuǎn)低于設(shè)計(jì)水平。國(guó)內(nèi)外常用的方法是將CFD 模型應(yīng)用到絮凝過(guò)程中,并已經(jīng)證明CFD對(duì)絮凝模擬的實(shí)用有效性。通過(guò)絮凝動(dòng)力學(xué)的研究,得到了絮凝中重要參數(shù)速度梯度值(G值)隨時(shí)間的變化規(guī)律,并將CFD模型應(yīng)用到往復(fù)式隔板絮凝池的設(shè)計(jì)過(guò)程中,通過(guò)流體力學(xué)軟件FLUENT的數(shù)值模擬,得到了往復(fù)式隔板絮凝池內(nèi)部水流的狀態(tài)和內(nèi)部的流場(chǎng),并對(duì)模擬結(jié)果進(jìn)行了深入的分析,定性分析水流狀態(tài)對(duì)絮凝處理效果的影響。
為使水流中的顆粒相互碰撞,就使其與水流產(chǎn)生相對(duì)運(yùn)動(dòng)。水中的顆粒與水流產(chǎn)生相對(duì)運(yùn)動(dòng)好的辦法是改變水流的速度。改變速度的方法有兩種:①改變水流速度時(shí)造成的慣性效應(yīng)來(lái)進(jìn)行凝聚;②改變水流方向。在湍流中充滿(mǎn)著大大小小的渦旋。其中大渦旋能夠使流體進(jìn)一步的摻混,使顆粒均勻擴(kuò)散于流體中;同時(shí)創(chuàng)造大量的小漩渦,并將能量輸出給小渦旋。而小渦旋的作用是促進(jìn)顆粒的碰撞,提高絮凝效率。微渦旋理論認(rèn)為:水中微渦旋尺度與礬花顆粒尺度相近時(shí)混凝反應(yīng)充分。而小渦旋的動(dòng)力學(xué)致因是慣性效應(yīng),特別是湍流渦旋的離心慣性效應(yīng),由此可見(jiàn)湍流中微小渦旋的離心慣性效應(yīng)是絮凝的重要?jiǎng)恿W(xué)致因。
好的絮凝效果不僅需要大量的顆粒碰撞,還需要控制顆粒進(jìn)行合理有效的碰撞,使顆粒聚集起來(lái)。速度梯度是絮凝過(guò)程中常用的控制動(dòng)力學(xué)因素。根據(jù)絮凝動(dòng)力學(xué)理論得知,絮凝過(guò)程中的速度梯度值是逐漸減小的;而且開(kāi)始時(shí)刻的速度梯度值要求能與混合階段銜接上,所以一般要求較大。這時(shí)的絮凝也要求接觸和碰撞,但是由微渦旋理論可知要求的水力半徑要適合于自身的直徑,才能發(fā)生有效碰撞。理論上,攪拌強(qiáng)度越大,速度梯度越大,相互接觸碰撞的機(jī)會(huì)越多。但攪拌強(qiáng)度大(G值大),水流的剪切力就大,松散的絮體受到水流剪切會(huì)二次斷開(kāi)成為小絮體。因此要求攪拌的強(qiáng)度(也就是速度梯度)隨著絮凝的進(jìn)行而逐漸變小。整個(gè)混凝的過(guò)程中,G值是遞減的。但是速度梯度遞減規(guī)律,國(guó)內(nèi)外的還沒(méi)有定論。
矩形往復(fù)式絮凝池中普遍存在死水區(qū),死水區(qū)的存在,不僅容易形成沉積物的堆積,而且嚴(yán)重阻礙了水流的運(yùn)動(dòng)。特別是在絮凝后期,水流速度逐漸減小時(shí),死水區(qū)對(duì)水流有越來(lái)越大的的負(fù)面影響。而圓弧形渠道,幾乎不存在死水區(qū),可以有效的消除死水區(qū)帶來(lái)的負(fù)面影響。且圓弧區(qū)的水流速度也比矩形渠道的分布均勻,有利于節(jié)約能耗。
圓弧形渠道能夠減小渠道轉(zhuǎn)彎處的速度,減少能耗。而且,圓弧形渠道能夠產(chǎn)生很多復(fù)雜的渦旋結(jié)構(gòu),提高絮凝效率。通過(guò)兩個(gè)方案中轉(zhuǎn)彎處X 方向速度的對(duì)比證明,圓弧形拐彎往復(fù)式絮凝器的速度梯度變化規(guī)律更加合理,混凝效果更好。